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Confined states in large-aspect-ratio thermosolutal convection
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Two-dimensional thermosolutal convection with no-slip boundary conditions is studied using numerical
simulations in a periodic domain. The domain is large enough to follow the evolution of phase instabilities of
fully nonlinear traveling waves. In the parameter regime studied these instabilities evolve, without loss of
phase or hysteresis, into a series of confined states or pulses characterized by locally enhanced heat and solute
transport. The wavelength and phase velocity of the traveling rolls within a pulse differ substantially from
those in the background. The pulses drift in the same direction as the convection rolls on which they ride but
more slowly, and are characterized by an exponential leading front and an oscillatory trailing end. Multiple,
apparently stable, states are found for identical parameter values. The qualitative properties of the pulses are in
good agreement with the predictions of a third-order phase equation which accounts for the relation between
wave number and phase velocity, the oscillatory tails and the multiplicity of states. These properties of the
pulses are shown to be a consequence of Shil’nikov dynamics in the spatial domain.@S1063-651X~98!04901-0#

PACS number~s!: 47.20.2k, 47.35.1i
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I. THE PHYSICAL PROBLEM

The dynamics of overstable convection produced by
competition between stabilizing and destabilizing mec
nisms in doubly diffusive systems has attracted much in
est. Typical of such systems is thermosolutal convection
which this instability usually develops into nonlinear trave
ing waves. Such waves were studied extensively@1,2# using
a combination of bifurcation analysis and numerical simu
tion in two dimensions, employing periodic boundary con
tions with period 2p/kc in the horizontal. Herekc is the
wave number with which the instability sets in. While su
simulations are suitable for the study of the relative stabi
between traveling and standing waves they exclude lo
wavelength modes to which such waves can become
stable.

This paper is devoted to the study of long-wavelen
instabilities of fully nonlinear traveling waves. For this pu
pose we employ a relatively large aspect ratioG564 with
periodic boundary conditions applied atx50, 64 allowing
something of the order of 26–32 roll pairs to form in th
spatially uniform state, depending on parameters. We fi
and describe in detail, a new dynamical traveling wave st
consisting of one or more nonlinearpulsesor confined states
comprising rolls of different wave number, phase veloci
and amplitude than the background wave train, that tra
more slowly than the background while transporting more
the heat and solute. We provide convincing evidence
these pulses form as a result of a phase instability of
background wave train, and describe a qualitative the
based on a third-order phase equation that accounts for
structure. In particular, we suggest that both single-pulse
multipulse states are manifestations of Shil’nikov dynam
in the spatial variable and thereby account for the obse
tion, at fixed parameter values, of multiple, numerica
stable, pulse states.

Confined states have been the subject of much intere
the last several years, motivated largely by the discovery
571063-651X/98/57~1!/524~22!/$15.00
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such states in binary fluid convection@3#. This system is
closely related to thermosolutal convection but differs fro
it in several crucial ways. In binary fluid convection the st
bilizing solute gradient develops in response to the app
adverse temperature gradient; no solute is therefore tr
ported through the system. The traveling waves that are
served appear via a subcritical Hopf bifurcation, and ve
close to onset are seen to evolve into patches of trave
waves separated by an essentially quiescent fluid. The e
lope of these waves moves rather slowly and in some exp
ments may be stationary. A qualitative theory of this ph
nomenon, based on envelope equations coupled to
concentration field, appears to account for most of the
served properties of these confined states. It should be n
that the subcriticality of the bifurcation is an essential part
this theory@4#, which describes the traveling wave patches
terms of solitary waves coupled to the large scale concen
tion field @5#. Such waves are in turn to be viewed asho-
moclinic orbits to the origin in an appropriate amplitud
equation, that is, the amplitude increases from zero
x52` to a maximum and then decreases to zero again
x→1` @6#. Such states have also been found in numer
simulations of the full partial differential equations with e
perimental parameters and are in excellent agreement
their measured properties@7#.

The confined states that form the subject of the pres
paper are quite different. In particular, they connect a u
form but fully nonlinear wave train atx52` to itself as
x→`. Consequently, the traditional amplitude equation a
proach is inadmissible; the pulses must be described usi
real order parameter, the phase of the wave. We are ab
locate numerically a regime in which the phase of the wa
is apparently conserved, and develop our theory based
phase conservation. As discussed further below, the pha
not always conserved and when it is not our theory no lon
applies.

The recent experimental realization of doubly diffusi
convection by Predtechenskyet al. @8# raises the possibility
524 © 1998 The American Physical Society
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57 525CONFINED STATES IN LARGE-ASPECT-RATIO . . .
that the pulses described below could be observed in an
propriately focused experiment. In these experiments the
stabilizing buoyancy force is produced by an imposed c
centration gradient of asecondspecies, instead of an adver
temperature gradient. Consequently the Lewis number~i.e.,
the ratio of the diffusivities of the stabilizing and destabili
ing components! lies typically in the range 0.1–1.0, a param
eter range that forms the focus of the present study. H
ever, in the following we retain the traditional thermosolu
terminology.

This paper is organized as follows. In the next section
describe the system studied and some of its elementary p
erties. In Sec. III, which forms the bulk of the paper, w
describe the results of our numerical simulations. In parti
lar, we discuss the properties of the various fields~tempera-
ture, concentration, vorticity! inside the pulses and outsid
We provide detailed information on the phase velocity, wa
number, and amplitude of the rolls inside and outside a pu
at three different Rayleigh numbers, as well as informat
about the speed of propagation of the pulses. We also
scribe the transport properties of the pulses in both vert
and horizontal directions, and compare their transport e
ciency with the background wave train. This informatio
forms the basis of the theoretical interpretation of the res
advanced in Sec. IV. The paper ends with a brief discuss
of the results and an intimation of future work.

II. THE MATHEMATICAL MODEL

The nondimensionalized equations describing tw
dimensional thermosolutal convection can be written in
form @1#

1

s
@] t¹

2C1J~C,¹2C!#5RT]xU2RS]xS1¹4C, ~1!

] tU1J~C,U!5]xC1¹2U, ~2!

] tS1J~C,S!5]xC1t¹2S, ~3!

where C(x,z,t) is the stream function,Q(x,z,t) and
S(x,z,t) denote departures of the temperatureT and concen-
trationS from their linear conduction profiles in the absen
of convection, and J(C, f ) denotes the Jacobia
](C, f )/](x,z). In terms of the stream function the veloci
is given by (u,0,w)5(2]zC,0,]xC). The dimensionless pa
rametersRT and RS are the thermal and solutal Rayleig
numbers, respectively; we shall use the former as our bi
cation parameter. The quantitiess andt denote the Prandt
and Lewis numbers.

Equations~1!–~3! are to be solved in the domain (x,z)
P@0,G)3@0,1#, for t.0, subject to periodic boundary con
ditions in the horizontal,

~C,U,S!~x,z,t !5~C,U,S!~x1G,z,t !, ~4!

and no-slip, fixed temperature and concentration bound
conditions at top and bottom,

u5w5U5S50, z50,1. ~5!
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The velocity boundary conditions translate into the followi
boundary conditions on the stream function:

C~x,0,t !50, C~x,1,t !52m~ t !,
~6!

]zC~x,0,t !50, ]zC~x,1,t !50,

with m(t) determined as part of the solution. The absence
Galilean invariance implies thatm(t) is unique; in factm(t)
is the horizontal mass flux resulting from any mean flo
„U(z,t),0… that accompanies the solution:

m~ t ![E
0

1

U~z,t !dz52
1

G E
0

1

dzE
0

G

dx
]C

]z
. ~7!

For traveling wavesm(t)Þ0.
As in earlier studies@1# we use the parameter value

s51.0, t51021/2, with RS533104 andG564.0. Figure 1
shows the neutral stability curveRT as a function of the
horizontal wave numberk and the corresponding frequenc
v(k), both for G564.0 andG5`. The dots indicate the
discretized values corresponding to the finite aspect ra
For these parameter values, the critical~thermal! Rayleigh
number, wave number, and oscillation frequency are fou
to be

RT
~0!525 251.76,

k~0!54.37, ~8!

v~0!570.66.

The large value ofv (0) indicates that the system is far from
the codimension-two point.

With periodic boundary conditions the system~1!–~5! is
equivariant under the group O~2! of rotations and reflections
of a circle. As a consequence of this symmetry the numbe
eigenvalues on the imaginary axis is doubled, and t
branches of solutions, standing waves~SW! and traveling

FIG. 1. Neutral stability curves~a! RT vs k and ~b! v vs k for
G564.0,RS530 000.0,s51.0, andt51021/2. Dots correspond to
the discrete modes of the finite domain, which increase in num
in proportion toG. The continuous-case critical values provided
linear stability theory areRT

(0)525 251.76, k(0)54.37, v (0)

570.66.
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526 57ALEJANDRO SPINA, JURI TOOMRE, AND EDGAR KNOBLOCH
waves~TW!, bifurcate simultaneously from the conductio
solution. Specifically, near onset,

C~x,z,t !5Re@AL~ t !ei @kx1fL~ t !#1AR~ t !ei @kx2fR~ t !## f ~z!

1O~2!, ~9!

whereAL(t) andAR(t) are the~real! amplitudes of left- and
right-traveling waves, satisfying the equations

ȦR5~l1aAL
21bA21••• !AR ,

ȦL5~l1aAR
21bA21••• !AL . ~10!

Here A2[AR
21AL

2 is the square of the total amplitude, an
l6 iV are the~double! eigenvalues of the linear stabilit
problem. Generically, these equations possess only three
sistent solutions: the conduction state (AL , AR)5(0,0), left-
traveling waves (A,0), and standing waves~A/&, A/&!; all
other solutions can be obtained using translations and/o
flections of these elementary solutions. The stability of th
solutions is determined by the real coefficientsa, b as de-
scribed by Knobloch@9#. With stress-free boundary cond
tions at top and bottomb[0 @1,9#; this is not so, however
for the more realistic no-slip boundary conditions~5!. Re-
nardy@10# shows that for the parameters employed both T
and SW bifurcate subcritically at onset. Thus neither bra
is stable near onset. The large-amplitude traveling waves
find numerically at supercritical Rayleigh numbers proba
acquire stability at finite amplitude via a saddle-node bif
cation followed by the shedding of a branch of modula
traveling waves, as described in Ref.@11#.

Equations~1!–~3! with boundary conditions~4!–~6! were
solved using a hybrid finite-difference and spectral sche
Spectral decomposition in the horizontal with 16 grid poin
per unit length provided 512 Fourier modes for the spec
decomposition at eachz level of the grid. A 33 point equal-
length finite-difference grid in the vertical provided an ec
nomic compromise between the resolution needs of
boundary layers and those of the long-range fluxes.
worked with the equations of motion in their biharmon
form ~1!–~3! rather than the more traditional stream
function–vorticity formulation in order to avoid~a! inversion
of the Poisson operator, and~b! difficulties arising from the
coupling between the stream function and vorticity@12#.
These are associated with the peculiar nature of the boun
conditions for the stream functionC and the initial condi-
tions on the vorticityv, which lacks boundary condition
@13#. In the biharmonic formulation the specification of bo
Dirichlet and Neumann boundary conditions forC poses no
difficulty because both are required to supplement the fou
order elliptic operator¹4 present in Eq.~1!.

Solutions were first computed with fictitious bounda
conditions for the stream functionC, namely,C5]zC50,
at z50,1. This allows for larger time steps in the numeric
code and a fast approach to a stationary solution. Th
boundary conditions cancel the overall lateral fluid transp
but the dynamics that result from them are close to the
ones when the net horizontal transports are small. One s
lation was run from random initial conditions until the sol
tion matured, and then solutions for other values ofRT were
found by perturbing the previous ones. Once stationarity w
er-
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achieved in this manner, the resulting fields were used
starting points for subsequent simulations in which the r
boundary conditions for the stream function were us
@]zC50, at z50,1, with C(x,0,t)50, C(x,1,t)52m#.
Other solutions were run fully from random initial data fo
checking purposes.

III. RESULTS

The nonlinear simulations reported below explore t
Rayleigh number range fromRT51.15RT

(o) to 1.55RT
(o) and

cover the regime from just prior to pulse formation to t
regime where phase is no longer conserved and solut
appear weakly chaotic. We concentrate on the range cha
terized by phase conservation, and present detailed re
for three values ofRT , viz, 1.19RT

(o) , 1.23RT
(o) , and

1.27RT
(o) .

The efficiency of convection is measured by the therm
and solutal Nusselt numbers. We define these dimension
numbers as the ratios of the time-averaged vertical hea
solute flux to the corresponding conductive flux in the a
sence of convection through a given planez5const. Specifi-
cally, we define the thermal and solutal Nusselt numberden-
sities NT(x,z) andNS(x,z) in dimensionless variables to b

NT~x,z!5 K 2
]T~x,z,t !

]z
1w~x,z,t !T~x,z,t !L ~11!

and

NS~x,z!5 K 2
]S~x,z,t !

]z
1t21w~x,z,t !S~x,z,t !L ,

~12!

where ^ & indicates the time average. The thermal Nuss
numberNT(x) is then given by

NT~x!5E
0

1

NT~x,z!dz. ~13!

In the simulations reported here no qualitative difference w
found between the values of the vertically averaged Nus
numberNT(x) and those ofNT(x,z) evaluated at midlayer
The total thermal Nusselt number is usually defined as

NT5
1

G E
0

G

NT~x!dx. ~14!

We shall find it convenient to also introducereducedthermal
Nusselt numbers, defined by

NT,D5S 1

*DdxD ED
NT~x!dx. ~15!

These measure the transport properties of heat in subdom
D of the overall domain of extentG. Solutal Nusselt numbers
NS(x), NS , andNS,D are similarly defined.

For a steadily traveling pattern with or without a pul
~but no phase slips! all global quantities are time indepen
dent. This is not so, however, for the reduced Nusselt nu
bers which are modulated because of the passage of rolls
and out of the pulse. In addition to the above quantities
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57 527CONFINED STATES IN LARGE-ASPECT-RATIO . . .
local kinetic energy densityE(x,z,t)5 1
2u–u, and the enstro-

phy densityZ(x,z,t)5uvu2 are used as diagnostics, withE
and Z being the values of the associated integrals over
full domain. Herev5¹3u is the vorticity.

Lateral and vertical fluxes of heat and solute have b
computed, as have the mean lateral velocity and mass
When the fluid motion attains a statistically stationary
gime these quantities become time independent. The w
length of the convective rolls both inside and outside
pulses is an important diagnostic of the phase and has
carefully measured. The propagation speeds of the rolls
side and outside the pulses were computed by tracking z
of the stream functionC at midlayer. The presence of
‘‘mirror-glide’’ symmetry @2,14–16# makes the midline the
natural place for these measurements. Finally, moving a
ages of several of the fields have been obtained. Such a
ages are computed in reference frames moving at the p
velocity. This procedure filters out small-scale structures,
vealing the pattern of large-scale behavior.

A. Structure of the fields

At the lower end of our Rayleigh number regime rando
perturbations of the conduction stateC5U5S50 evolve
into a spatially uniform traveling wave train; left- and righ
traveling wave trains are equally likely. Although of mode
amplitude these solutions reveal that bothU and S have a
trapezoidal, highly nonharmonic shape that cannot be
scribed quantitatively by a weakly nonlinear expansion n
onset@15,16#. In these states all the fields have the ‘‘mirro
glide’’ symmetry

f ~x,z,t !52 f S x1
l

2
,12z,t D , ~16!

which is a combination of a translation by half a waveleng
in the x direction with a mirror reflection through thez5 1

2

plane@2,14–16#. This symmetry persists even at large Ra
leigh numbers as long as the number of roll pairs is c
served during their time evolution. Associated with the
states small-amplitude long-wavelength modulations w
sometimes observed; these are believed to be long-lived
sients.

As the Rayleigh numberRT is increased propagatin
pulses on a background of traveling rolls appear. When
simulations start from a random perturbation of the cond
tion state at these values ofRT there appear several suc
domains with different wavelengths and with varying widt
and propagation velocities. During an initial transient regi
these domains move and recombine until they attain t
ultimate number. When two such pulses remain after
first stage, their evolution continues until they reach a fi
equilibrium separation that is preserved~with slight modula-
tions in time! as they move, both at the same speed, in
direction of the background rolls. Simulations carried o
with Rayleigh numbers at 1.31RT

(o) or above produced state
that failed to settle down into a stable coexistence of
different domains.

We now define the quantities that will be used to rep
our findings and describe how they were measured. For
purpose we split the domain into the pulse and the ba
e
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x.
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ground, indicated by subscriptsp and b, respectively, such
that Dp1Db5G. The boundary separating these regions
defined in terms of the wavelength as measured fr
C(x,z,t) at z5 1

2 ; the pulse region is defined as the regi
with less than average wavelength, with the background
gion forming the complement.

Roll wavelengthl r(x): The length of each roll was mea
sured at midlayer and used to define the local semiwa
length. A discrete function was thus built whose ordina
are the midpoint coordinates of each roll and whose abs
sas are twice the measured length of the corresponding
The roll wavelengthl r(x) was obtained by fitting a continu
ous curve through these points. The average roll wavelen
l̄r was computed from the continuous fit using the expr
sion

l̄r5
1

G E
0

G

l r~x!dx.

The roll wavelength in a pulse was computed using

l̄r ,p5
1

dp
E

dp

l r~x!dx,

where the subportiondp of the pulse regionDp involves rolls
with nearly uniform wavelengths, namely, with wavelengt
within 20% of the relative minimum value in the pulse~cf.
Fig. 10!. The wavelength in the background was obtain
from

l̄r ,b5
1

Db
E

Db

l r~x!dx,

whereDb is the background region of the traveling patter
Roll phase velocityv r(x): A discretized function was

computed by measuring the phase velocity of the points
midlayer where the stream function vanishes. A continuo
interpolation of the sampled values yieldsv r(x). The aver-
age roll velocityv̄ r , and the roll velocity within the pulse
v̄ r ,p and in the backgroundv̄ r ,b were then computed in an
analogous way to their wavelength counterparts. These q
tities are distinct from the pulse velocityvp .

1. RT51.19RT
„o…

Figure 2~a! shows a space-time plot of a one-pulse state
RT51.19RT

(o) . Only clockwise streamlines are shown. Th
pulse travels in the same direction as the background tra
ing rolls, but at a smaller speed: the rolls travel with
average speed ofv̄ r'14.21, while the pulse moves atvp
'5.88. The complete solution consists of 26 pairs of co
vecting rolls with an average wavelengthl̄r'2.12, but the
local wavelength inside the pulse (l̄r ,p'1.31) is seen to be
approximately one-half the wavelength in the backgrou
(l̄r ,b'2.86). These wavelengths are almost constant, ex
in the vicinity of the interface between the pulse and t
background. The presence of the pulse thus indicates st
coexistence of regions with rolls of different amplitudes, fr
quencies, and wave numbers. The pulse is a moving re
that the rolls have to traverse. In order to do so they shr
laterally, reduce their overall horizontal speed, and spin m
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FIG. 2. Traveling waves and pulses in a sequence of equally spaced snapshots of the stream functionC(x,z,t) in the full computational
domain, with time increasing upward. Rolls and pulses both propagate rightward.~a! One-pulse state forRT51.19RT

(o) involving 26 roll
pairs, l̄r'2.12, l̄r ,b'2.86, l̄r ,p'1.31, v̄ r'14.21,v̄ r ,b'15.01,v̄ r ,p'10.05,vp'5.88. ~b! Two-pulse state forRT51.23RT

(o) involving 26
roll pairs,l̄r'2.38,l̄r ,b'3.68,l̄r ,p'1.21,v̄ r'13.11,v̄ r ,b'15.05,v̄ r ,p'8.57,vp'5.42.~c! Two-pulse state forRT51.27RT

(o) involving 32
roll pairs, l̄r'2.45, l̄r ,b'3.43, l̄r ,p'1.11, v̄ r'10.66,v̄ r ,b'12.83,v̄ r ,p'7.24,vp'4.49.
m

v
es
-

-
e to
y

ore
the
vigorously until they pass out of the pulse region. For co
parison, atRT51.15RT

(o) ~not shown! the solution also con-
sists of 26 roll pairs but the pulse is absent and the wa
length uniform. Careful numerical investigation indicat
that the pulse appears onceRT exceeds a well-defined thresh
old and that the formation process is nonhysteretic.
-

e-

Figure 3~a! shows a closeup view of the fields. The tem
perature contours are smoother than the solute ones; du
its small diffusivity, solute is transported predominantly b
fluid advection with very little diffusion, while the high dif-
fusivity of the temperature smoothes out its contours m
effectively. Plume structures can be seen to form inside
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57 529CONFINED STATES IN LARGE-ASPECT-RATIO . . .
pulse with a characteristic mushroom shape caused by
lateral bending of the upward plumes of heat and solu
Although the stream function in Fig. 3~a! has nearly the sam
number of contour lines inside and outside the pulse

FIG. 3. Closeup views of the field structures inside the pu
region ~left panels! and in the background~right panels! at a par-
ticular instant in time, showing~from bottom to top! the stream
function C, the temperature perturbationU, the concentration per
turbation S, the temperatureT, and the concentrationS. ~a! RT

51.19RT
(o) . ~b! RT51.23RT

(o) . ~c! RT51.27RT
(o) .
he
e.

e

contour lines inside the pulse are more tightly packed, in
cating increased gradients, particularly in the horizontal, a
hence increased vertical velocities. Stronger plumes will t
be found within the pulse, a fact corroborated by the lar
kinetic energy densities found there~not shown!. Both as-
cending and descending plumes tilt leftward in such a rig
traveling wave. In contrast toRT51.15RT

(o) ~not shown! the
solute contours possess clear regions of localized grad
inversion inside the pulses, indicating a local destabilizat
by the solutal field. The temperature also reveals region
localized gradient inversion, but mild in comparison to tho
of the solute. No such regions of inverted gradients
present outside the pulse at this value of the Rayleigh n
ber. Outside the pulse kinetic energy is mostly dissipated
boundary layers near the top and bottom, where the no-
boundary conditions force the velocity to vanish, while in t
pulse region more kinetic energy is dissipated within t
bulk of the fluid, hinting at a more active participation o
internal friction mechanisms between the counterpropaga
upward and downward plumes of fluid.

Figure 4~a! shows the Nusselt number inside and outs
the pulse. The values on the right correspond to the avera
Nusselt numberNT and to the reduced Nusselt numbers
side the pulse (NT,p) and in the background (NT,b). The
Nusselt numberNT(x) oscillates vigorously inside the pulse
When averaging these curves to obtain the reduced Nu
number, a larger value is obtained inside the pulse reg
than outside, indicating that more efficient transport of h
takes place inside the pulse. Up to an overall scale the so
Nusselt numberNS(x) behaves in the same way and is om
ted. Thus although the region occupied by the pulse is 1
of the total length of the convection domain, 24% of the to
heat transport and 26% of the total solute transport is acc
plished within the pulse.

2. RT51.23RT
„o…

As the Rayleigh number is increased, more pulses
seen in mature states. Figure 2~b! shows a state with two
right-traveling pulses atRT51.23RT

(o) . The number of roll
pairs in the pattern remains at 26, the same as in the o
pulse case. The overall portion of the physical domain oc
pied by the pulses is now 36%, and the local wavelength
the rolls inside the pulses (l̄r ,p'1.21) is roughly 33% of that
of the rolls outside the pulses (l̄r ,b'3.68). The rolls move
to the right at an average velocity ofv̄ r'13.11, and both
pulses travel to the right with the same velocityvp'5.42,
approximately 41% of the average velocity of the rolls. A
though both pulses are of roughly the same length and
semble the single pulse of the previous case, they are
equally spaced. The distance between the two pulses se
to be an equilibrium separation that is unaffected by sm
perturbations.

The corresponding fields and Nusselt numbers are sh
in Figs. 3~b! and 4~b!. The two pulses now occupy 36% o
the domain and carry 47% of the heat transport and 50%
the solute transport. The pulses are characterized by l
regions of localized gradient inversion in the solutal field a
milder ones in the temperature field. No such gradient inv
sion is observed outside them.
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Figure 5 shows the instantaneous profiles of the m
lateral velocityū(z,t) and lateral heat flux densityQT(z,t) at
RT51.23RT

(o) , with overbars denoting horizontal averag
over either the whole domain or over the pulse and ba
ground regions. The profiles of the lateral solute flux dens
QS(z,t) are shown as dashed lines in the second set of p
els. The left column contains averages computed along
whole physical domain, the middle column shows avera
computed within the pulse, and the right column those co
puted in the background regionaheadof the pulse. The con-
tour plot of the stream function below the two panels ide
tifies the regions used in the center and right colu
averages. The mean lateral velocityū changes direction thre
times in the vertical, but the overall mass fluxm is directed
toward the left.

Figure 6 shows the local phase velocity as a function
position in the domain in the form of a space-time plot. T
pulses are associated with localized deficits in the phase
locity. Like the wavelength the phase velocity is nea

FIG. 4. Thermal Nusselt numbers at a particular instant in tim
Vertical lines indicate roll boundaries~dotted!, and pulse bound-
aries ~solid!. The bottom panel shows the pointwise behavior
NT(x) oscillating around the total thermal Nusselt numberNT indi-
cated at the right. In the top panel the numbers on the right indi
the total Nusselt number~middle!, and the reduced Nusselt numbe
inside ~top! and outside~bottom! the pulse region. Solutal Nusse
numbers behave in a qualitatively similar way~see Table I for a
summary!. ~a! RT51.19RT

(o) . ~b! RT51.23RT
(o) . ~c! RT

51.27RT
(o) .
n

-
y
n-
he
s
-

-
n

f

e-

piecewise constant, with relatively sharp transitions near
pulse boundaries. The rapid albeit smooth transition betw
them produces a clear resolution of the pulse bounda
when the time slices are taken together as in Fig. 6. This i
for the roll wavelengths as well@see Fig. 10~b!#. The wave-

.

f

te

FIG. 5. Instantaneous vertical profiles of mean lateral veloc
~top panels! and lateral heat flux density~bottom panels, continuous
lines! and lateral solute flux density~bottom panels, dotted lines!
for RT51.23RT

(o) . Left panels correspond to horizontal averag
performed over the whole domain. Center~right! panels depict
these same averages performed only over the pulse~background!
region, as indicated by the reference panel at the bottom.

FIG. 6. The roll phase velocityv r as a function of position in a
two-pulse state atRT51.23RT

(o) with 26 roll pairs at three times
t525, 27, 29. Small solid dots indicate computed values. Vert
lines indicate roll boundaries~dotted!, and pulse boundaries~solid!.
The reference stream function panels correspond to the first~bot-
tom! and last~top! phase velocity plots. Values at the right side
each panel are~from top to bottom! the average roll velocity in the
background, the roll velocity at the center of the pulse, and
pulse velocity.
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lengths inside the pulses and outside are nearly constant
both pulses show a clear difference between their lead
and trailing ends. The presence of the second pulse is ne
sarily responsible for the larger wavelength of the rolls o
side the pulse region. Associated with the trailing interfa
one can now discern small superposed oscillations in b
the local wavelength and phase velocity@cf. Fig. 10~b!#. The
asymmetry between the leading and trailing ends of
pulses is present in all diagnostic quantities and is charac
istic of all the pulses discussed here; it provides the key
the theory discussed in Sec. IV.

3. RT51.27RT
„o…

Figure 2~c! also shows two rightward moving pulses, th
time for RT51.27RT

(o) . In this case 32 pairs of convectin
rolls are present with an average wavelength ofl̄r'2.45.
Although this state was obtained from the previous o
(RT51.23RT

(o)) by slowly increasing the thermal drivin
force, the total number of rolls in the pattern has chang
Therefore this state of the fluid motion isnot a small pertur-
bation of the previous one. The local wavelength of the ro
inside the pulses (l̄r ,p'1.11) is still roughly 32% of that
outside them (l̄r ,b'3.43), but the pulse spacing is now un
form. The average velocity of the rolls isv̄ r'10.66, and that
of the pulses isvp'4.49, approximately 42% of the averag
velocity of the rolls.

The shape of the rolls in the central part of the puls
remains quite homogeneous, but the contour lines outside
pulses appear more disordered, suggestive of lateral ero
at the boundaries of the pulses where the stream func
now attains larger values than inside. The trailing pulse
slightly larger than the leading one but the roll waveleng
away from the interfaces remain constant and similar in b
pulses. As in the previous case, the relative pulse separa
remains constant once a stationary regime is achieved.

Figures 3~c! and 4~c! show that the trends observed
RT51.19RT

(o) and RT51.23RT
(o) are enhanced. The pulse

are still characterized by strong convection and solute gr
ent inversion, but now regions of local gradient inversion
the solutal field can also be found outside the pulses.
tight packing of the convection rolls inside the pulses ma
these gradient inversion regions less extended inside
pulses than outside, where the bent plumes can be eje
horizontally for larger distances, as can be seen in the so
field S in Fig. 3~c!. Inside the pulses, on the other hand, th
are forced to recirculate and the gradient inversion is wea
The stream function contours inside the pulses retain t
symmetry; outside the pulses the maximum of the stre
function is displaced laterally from the geometric center
the rolls, creating large horizontal gradients inC and there-
fore large vertical velocities characteristic of strong asce
ing and descending plumes of fluid. This accounts for
regions of gradient inversion in the solute outside the puls
and is reflected in larger kinetic energy density there. T
two pulses occupy 44% of the domain and transport 54%
the heat and 57% of the solute.

4. RT51.55RT
„o…

For even higher values of the Rayleigh number pulses
constant form are no longer present. Figure 7 shows a t
nd
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eling wave pattern atRT51.55RT
(o) . The pulses are replace

by a couple of almost stationary regions of very small ho
zontal extent that the pulses have to traverse. These ‘‘ba
ers’’ serve as phase sinks: two events leading to the dis
pearance of a roll pair can be discerned, one in e
‘‘barrier.’’ In contrast the background region serves as
phase source: two events creating an additional roll pair
be seen in the time interval shown. It appears that the n
ber of roll pairs remains statistically stationary, with th
number of roll-splitting events in the background balanc
by roll-annihilation events in the slow-moving ‘‘barriers.
The presence of these spatiotemporal defects in the pa
indicates that phase is no longer conserved.

5. Mutated states

We have found that it is possible to generate multip
numerically stable states for fixed parameter values by a
cess we call mutation. In this process selected parts o
stable wave train were compressed while others were
panded, with the overall number of roll pairs kept u
changed. Such an initial condition obtained by ‘‘gluing’’ th
pieces back together was then evolved by time stepping
ward in time. If it was the pulse that was compressed
number of rolls in the pulse decreased rapidly as the sys
attempted to recover its equilibrium pulse wavelength.
contrast, when the background rolls were compressed a
pulse would often develop, again on a fast time scale. In
cases the resulting state was evolved until a numeric
stable final state was reached. In this way different sta
states could be manufactured for the same parameter va
The new states would typically differ from the original sta
in the overall roll number, the separation of the pulses, an

FIG. 7. As for Fig. 2, but showing a traveling wave atRT

51.55RT
(o) . Two nearly stationary pulses are present. Spatiote

poral defects form both inside the pulses and in the backgrou
phase is no longer conserved.
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the number of oscillations in their tails. They may even dif
in the overall number of pulses. We show two such state
RT51.23RT

(o) in Fig. 8 and summarize their properties
Table I. Other stable states have been found by starting f
a stable state and either increasing or decreasingRT . For
example, atRT51.18RT

(o) we found a single pulse using th
numerically stable pattern found forRT51.19RT

(o) as initial

FIG. 8. As for Fig. 2, but showing forRT51.23RT
(o) ~a! a three-

pulse state, and~b! a two-pulse state, both obtained by mutation
the two-pulse state shown in Fig. 2~b! for the sameRT . The two-
pulse state differs from the 26 roll pair state shown there, altho
it has the same number of rolls.
r
at

m

configuration, but three pulses when starting from the
merically stable pattern found forRT51.15RT

(o) ~not shown!.

6. Summary of transport properties

The transport properties of the pulses are summarize
Tables I–III. In all cases the total thermal and solutal Nuss
numbersNT andNS are increasing functions ofRT . Within
the states sharing the same Rayleigh numberRT

51.23RT
(o)), the Nusselt numbers increase with the numb

of rolls in the state. The same holds for the reduced Nus
numbers inside the pulses,NT,p and NS,p , but not for the
reduced Nusselt numbers in the background~see Table I!,
indicating a gradual increase in convection efficiency ins
the pulses but not in the background region.

For RT51.23RT
(o) the two states with 26 roll pairs and tw

pulses share almost identical transport properties, being
ferentiated only by the relative size of the pulses and th
mutual separation. Despite these differences the total ex
of the pulse and the background regions is roughly the sa
in both cases, with the pulse widths comparable in the fi
and the two background regions comparable in the seco

When phase is conserved~as forRT51.19RT
(o) , 1.23RT

(o) ,
1.27RT

(o)!, the pulses are very active dynamical structu
that play a substantial role in convective transport. In t
regime the proportion of the kinetic energy, of the enstrop
and also of the vertical heat and solute transports attribu
to the pulses exceeds the relative portion of the domain
cupied by the pulses. Thus pulses enhance the overall tr
port properties of the system~cf. Table II!. Moreover, when
two pulses are present, the fraction of the domain they
cupy increases both withRT and with the number of rolls in
the pattern. In contrast, when phase is not conserved~as for
RT51.31RT

(o) and 1.35RT
(o)! the proportional heat and solut

transports by the pulses are comparable to the proporti
extent they occupy in the horizontal, indicating that the pr
ence of the pulses no longer increases transport efficien

In all cases studied the average velocity of the rolls (v̄ r)
decreases with increasing Rayleigh number while the ove
average roll length (l̄r) increases. The roll velocity within a
pulse (v̄ r ,p) also decreases with increasing Rayleigh numb
while in states corresponding to the same Rayleigh num
(RT51.23RT

(o)) it also decreases with increasing number
rolls ~cf. Table IV!. The velocity of the pulses is much les
than the phase velocity of the long-wavelength modulat
seen at small Rayleigh numbers (RT51.15RT

(o)), indicating
that the pulses are fully nonlinear states.

Table III compares the lateral fluxes of mass, heat, a
solute obtained by averaging the horizontal fluxes cor
sponding to 50 snapshots spanning five units of time. Th
is a small lateral mass fluxm, which for the Rayleigh num-
ber values analyzed ranges between20.01 and 20.06,
namely, opposite to the motion of the rolls. This lateral ma
flux originates from an asymmetry and tilting of the roll
The lateral transports of heat and solute are also dire
toward the left in these cases. These lateral fluxes are s
when compared to the vertical ones~as judged by the ratios
QT /NT or QS /NS!, namely, between 60 and 120 time
smaller for the heat flux, and between 25 and 60 tim
smaller for the solute flux~cf. Tables I and III!. In all cases
the lateral transports show large relative deviations and t

h
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TABLE I. The thermal and solutal Nusselt numbers computed for the whole domain (NT ,NS), within the pulses (NT,p,NS,p), and in the
background (NT,b ,NS,b). Numbers in parentheses indicate standard deviations.

RT /RT
(o) Roll pairs Pulses NT NT,p NT,b NS NS,p NS,b

1.15 26 0 1.43 1.52
(9.531025) (1.431024)

1.19 26 1 1.56 1.99 1.46 1.71 2.32 1.56
(4.731024) (1.731021) (3.531022) (1.031023) (5.531021) (1.131021)

1.23 22a 2 1.57 2.06 1.39 1.73 2.42 1.48
(2.131023) (1.931021) (6.531022) (4.231023) (5.931021) (2.031021)

24a 2 1.62 2.13 1.39 1.81 2.54 1.48
(2.731023) (6.531022) (2.831022) (5.631023) (2.131021) (8.731022)

26 2 1.67 2.18 1.38 1.89 2.63 1.47
(3.431023) (1.231021) (6.631022) (7.531023) (3.731021) (2.131021)

26a,b 2 1.67 2.17 1.38 1.89 2.62 1.47
(2.631023) (8.931022) (4.631022) (6.131023) (2.831021) (1.431021)

33a 3 1.88 2.24 1.44 2.20 2.75 1.53
(2.331023) (1.231021) (1.631021) (5.231023) (3.731021) (5.231021)

1.27 32 2 1.95 2.40 1.60 2.34 3.05 1.79
(8.931023) (1.331021) (9.931022) (2.231022) (4.131021) (3.131021)

1.31 46c 2 2.45 2.55 2.26 3.16 3.41 2.73
(1.831022) (1.031021) (2.031021) (2.731022) (3.331021) (6.331021)

1.35 45c 2 2.50 2.58 2.40 3.27 3.53 2.94
(2.431022) (1.331021) (1.831021) (3.631022) (4.231021) (5.631021)

1.55 25c,d ? 2.68 3.49
(4.731022) (7.331022)

aCorresponds to mutated states.
bThis two-pulse, 26 roll pair state differs from the one shown in Fig. 2~b! in the relative size of each of the pulses and in the interpu
separation.
cPhase is not conserved for these values ofRT . The number of roll pairs fluctuates or is not precisely defined; the value reported is the
frequent in the time interval analyzed.
dPulses are no longer seen for this value ofRT .
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dependence on the Rayleigh number remains unclear.

B. Anatomy of a pulse

Thus far we have characterized our solutions either
means of snapshots at particular instants of time or by me
of horizontal averages. We now describe the properties
comoving time averages of temperature, solute, stream f
tion, and vorticity, as well as of the thermal and total buo
ancy forces defined by

f B
~T!5RTU, f B

~S!52RSS, f B[ f B
~T!1 f B

~S!5RTU2RSS.
~17!

Time averaging of spatiotemporal patterns has proved to
successful tool in analyzing complicated pattern-form
systems. In some cases it can reveal regular structures u
lying disordered ones, even well into spatiotemporally c
otic regimes@17#. Indeed Bartenet al. @16,7# have used time
averages of fields to deduce the role played by the con
tration field in holding together two different coexisting d
mains.

Time averages can be performed in the laboratory fra
or from the reference point of a moving observer. The form
provide essentially the same information as the instantane
horizontal averages of the preceding section, and will no
considered further. We denote the latter by^ &v , with the
y
ns
of
c-
-

a

er-
-

n-

e
r
us
e

subscriptv indicating the velocity at which the observer
moving. Carefully chosen time averages filter out small-sc
features of the fields and reveal their long-range compone
In particular, the time averages recorded by an observer
moving with the pulses allows one to infer what the puls
are actually ‘‘seeing’’ when they drift along the domain.

A series of 50 to 100 consecutive snapshots of the fie
was taken at equal time intervals of 0.1, spanning from fi
to ten units of time. These fields were suitably shifted a
then averaged together. Thus, ifF(x,z,t) represents any o
the fields, then

^F~x,z!&v[
1

t E
0

t

F~x2vt,z,t !dt'
1

n (
j 51

n

F~x2vt j ,z,t j !.

~18!

The resulting structures were further smoothed with a
pered low-pass filter.

Figure 9 shows the time-averaged fields atRT51.23RT
(o)

~with 26 roll pairs in the pattern! as seen by a comoving
observer traveling at the pulse velocityvp55.42. The aver-
age reveals clearly the pulse location. The temperature
solute time averages possess smooth gradient variat
from T5S51 at the bottom, toT5S50 on top. Inside the
pulse region, the vertical gradients of temperature and so
are smaller at midlayer than in the surrounding fluid. Tho
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TABLE II. The ratioDp/G denotes the fraction of the domain occupied by the pulses. Shown also a
fractions of the kinetic energyEp /E and enstrophyZp /Z within the pulse regions relative to those quantiti
for the whole domain, and the proportion of the vertical heat flux carried by the pulses compared to th
namely,NT,pDp /NTG, and the analogous proportion of the vertical solute flux. Numbers in parenth
indicate standard deviations.

RT /RT
(o) Roll pairs Pulses Dp /G Ep /E Zp /Z NT,pDp /NTG NS,pDp /NSG

1.19 26 1 0.19 0.29 0.32 0.24 0.26
(6.331024) (7.931024) (3.231023) (2.131022) (6.131022)

1.23 22a 2 0.27 0.45 0.49 0.35 0.37
(6.431023) (1.131022) (1.231022) (3.331022) (9.331022)

24a 2 0.31 0.51 0.55 0.41 0.44
(8.131024) (1.731023) (2.631023) (1.231022) (3.631022)

26 2 0.36 0.56 0.61 0.47 0.50
(8.331024) (1.631023) (4.431023) (2.531022) (6.931022)

26a,b 2 0.36 0.57 0.61 0.47 0.50
(1.431023) (2.331023) (4.231023) (1.931022) (5.431022)

33a 3 0.54 0.72 0.75 0.65 0.68
(1.231023) (4.231023) (5.131023) (3.331022) (9.031022)

1.27 32 2 0.44 0.60 0.63 0.54 0.57
(8.531023) (1.331022) (1.331022) (2.931022) (7.631022)

1.31 46c 2 0.63 0.62 0.65 0.66 0.68
(2.231022) (3.531022) (3.231022) (3.831022) (7.131022)

1.35 45c 2 0.54 0.51 0.55 0.56 0.59
(1.631022) (2.131022) (1.931022) (3.431022) (7.231022)

aCorresponds to mutated states.
bThis two-pulse, 26 roll pair state differs from the one shown in Fig. 2~b! in the relative size of each of the
pulses and in the interpulse separation.
cPhase is not conserved for these values ofRT . The number of roll pairs fluctuates or is not precisely defin
the value reported is the most frequent in the time interval analyzed.
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same gradients are, however, very large close to the top
bottom boundaries, accounting for the larger reduced Nus
numbers inside the pulses. For ease of comparison the
and thermal buoyancy force fields, as in Eq.~17!, are plotted
using the same set of isobuoyancy contours. Thermal
solutal ~not shown! buoyancy forces possess rather featu
less profiles, much like the temperature and solute avera
except for a couple of pronounced maxima and minima t
reveal the location of the pulse. Both combine to give
complicated structure to the total buoyancy force in the pu
region.

The stream function panel in Fig. 9 shows an avera
long-range flow that circulates along the whole domain fr
right to left, with streamlines wiggling up and down throug
the bulk of the fluid. This is a familiar property of travelin
wave streamlines in the comoving frame@18#. In the labora-
tory frame the magnitude of the lateral mean flow spann
the domain was too weak to reveal itself readily in the stre
function contour plots@cf. Fig. 3~b!#. The striking feature of
this averaged stream function is the presence of group
vortices signaling the position of the pulses. There are
pairs of vortices for each pulse, one at the leading edge o
pulse and the other at the trailing edge, each pair with
vortex above and one below midlevel in the domain. T
vortex pair at the trailing edge~on the left! is the strongest of
the two, with the one at the top rotating counterclockw
and the lower one clockwise, both embraced by the fl
lines of the long-range flow. The pair at the leading edge
weaker and covers a larger extent of the pulse area, wi
nd
elt
tal
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t
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clockwise vortex on top and a counterclockwise one at
bottom.

It is not surprising to find a cluster of vortices travelin
with the pulses. We should recall that in all cases more e
cient transport was achieved in the pulse region: the ba
ground might have stronger plumes, but the ones inside
pulse are closer together. The plumes provide a cohe
means for transporting both heat and solute. These transp
depend on the correlation between the vertical componen
the velocityw and the temperature and solutal fieldsT and
S. The pulses are therefore regions of enhanced correla
between these fields and also of enhanced coherence am
the plumes. The resulting spatial nonuniformity implies t
presence of large-scale horizontal gradients ofw and hence
the presence of large-scale vorticity. These vortices can
be seen in Fig. 2 because they are much weaker than
convection rolls.

IV. PHASE EQUATION APPROACH TO THE PULSE
FORMATION PROBLEM

The pulses described in Sec. III were found to be ve
stable against random noise perturbations added to the fi
during the numerical simulation. When two pulses we
present, their separation and propagation speeds were u
fected by this type of perturbation, as long as the noise
tensity remained below certain threshold values. When
noise level is set above the threshold the pattern is destro
and the process of roll formation resumes almost fr
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TABLE III. Time-averaged lateral mass fluxm, the lateral heat fluxQT which represents the vertica
integral ofQT(z), and similarly the lateral solute fluxQS . Numbers in parentheses indicate standard de
tions.

RT /RT
(o) Roll pairs Pulses m QT QS

1.15 26 0 22.7731022 21.4731022 24.7031022

(9.131025) ~4.731025! ~1.531024!

1.19 26 1 24.2631022 22.1231022 26.6431022

~1.231023! ~5.331023! ~2.631022!

1.23 22a 2 23.1731022 21.5431022 24.8431022

~3.231023! ~1.231022! ~6.331022!

24a 2 23.5831022 21.6731022 25.1631022

~3.331023! ~1.631022! ~7.331022!

26 2 23.9531022 21.9931022 26.2731022

~8.431024! ~5.331023! ~2.131022!

26a,b 2 23.9531022 21.9931022 26.2931022

~2.631023! ~1.231022! ~5.431022!

33a 3 25.6431022 22.7231022 28.4531022

~4.431023! ~2.431022! ~1.131021!

1.27 32 2 24.3131022 22.5431022 28.8231022

~4.331023! ~2.131022! ~7.731021!

1.31 46c 2 22.9531022 21.4431022 24.4531022

~2.431023! ~1.831022! ~6.231022!

1.35 45c 2 21.0331022 25.5431023 21.5631022

~2.431023! ~1.131022! ~4.031022!

1.55 25c,d ? 5.8831022 2.9431022 9.4731022

~4.531023! ~9.931023! ~2.531022!

aCorresponds to mutated states.
bThis two-pulse, 26 roll pair state differs from the one shown in Fig. 2~b! in the relative size of each of the
pulses and in the interpulse separation.
cPhase is not conserved for these values ofRT . The number of roll pairs fluctuates or is not precisely defin
the value reported is the most frequent in the time interval analyzed.
dPulses are no longer seen for this value ofRT .
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scratch, without memory of its past state. In contrast, wh
an existing state is mutated in the manner described in
III A 5 the system usually relaxes into a new stable state. T
numerical evidence thus favors the coexistence of mult
stable states. In this section we seek to elucidate~a! the na-
ture of an individual pulse~its shape, propagation spee
etc.!, ~b! the origin of the double-pulse states described
Sec. III, and~c! the apparent multiplicity of pulse states a
luded to above.

A. Kinematics

In all three cases discussed in detail in Sec. III the ph
of the pattern was found to be conserved, that is, the num
of convecting rolls stayed constant through time, witho
merging or splitting of rolls. Our theoretical approach tak
this observation as its starting point. We think of the trav
ing wave in the formC„kx2vt1w(x,t),z…, wherew(x,t)
is thephaseof the wave. For a uniform wave train the pha
is constant. However, a spatially dependent phase provid
convenient description of nonuniform wave trains with wa
numberq(x,t) and frequencyV(x,t) that depend on posi
tion,

q5k1
]w

]x
, V5v2

]w

]t
. ~19!
n
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The simulations indicate a uniformly moving pulse, movin
with speedvp . The modulation in wave number and fre
quency thus takes the form

w~x,t !5w~x2vpt !. ~20!

Thus

q5k1w8, V5v1vpw8, ~21!

where the prime denotes differentiation with respect to ar
ment, i.e.,w85]w/]j, j5x2vpt. Since the simulations in-
dicate thatw(x,t) is defined for all (x,t) we have the kine-
matic relation

]q

]t
1

]V

]x
50 ~22!

that expresses conservation ofwaves@19#. In the frame of the
pulse this relation takes the form

]q

]t
2vp

]q

]j
1

]V

]j
50. ~23!

If uq2ku!1, uV2vu!1 while the pulse interfaces~leading
or trailing! haveO(1) thickness the appearance of the pu
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TABLE IV. Comparison of computed pulse velocityvp with values predicted from the jump conditio
~25!. See Sec. III A for symbol definition. When phase is conserved, typical measurement uncertain
wavelengths and phase velocities are60.01, and for pulse velocities60.02.

RT /RT
(o) Roll pairs Pulses l̄r l̄r ,b l̄r ,p v̄ r v̄ r ,b v̄ r ,p vp

(m) a vp
(p) b

1.15 26 0 2.00 15.15 11.65c

1.19 26 1 2.12 2.86 1.31 14.21 15.01 10.05 5.88 5.8
1.23 22d 2 2.20 3.72 1.42 14.03 15.27 9.33 5.66 5.66

24d 2 2.28 3.65 1.26 13.46 15.02 8.69 5.37 5.38
26 2 2.38 3.68 1.21 13.11 15.05 8.57 5.42 5.41
26d,e 2 2.38 3.71 1.19 13.11 15.07 8.52 5.44 5.43
33d 3 2.44 3.65 1.20 11.66 15.11 8.46 5.39 5.21

1.27 32 2 2.45 3.43 1.11 10.66 12.83 7.24 4.49 4.5
1.31 46f 2 2.27 3.33 0.99 7.55 11.77 5.99 3.63 3.54
1.35 45f 2 2.32 3.03 0.92 6.97 10.06 5.14 3.29 3.01

aMeasured pulse velocity values.
bPredicted pulse velocity values.
cCorresponds to small-amplitude long-wavelength modulations.
dCorresponds to mutated states.
eThis two-pulse 26 roll pair state differs from the one shown in Fig. 2~b! in the relative size of each of the
pulses and in the interpulse separation.
fPhase is not conserved for these values ofRT . The number of roll pairs fluctuates or is not precisely defin
the value reported is the most frequent in the time interval analyzed.
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is very abrupt and can then be viewed as ashock. Suppose
that such a shock~again leading or trailing! forms atj5j0 in
the pulse frame. Integrating across the shock and noting
the shock is, by construction, stationary yields the ‘‘jump
condition

FIG. 9. Time-averaged fields in a frame traveling to the rig
with the pulse velocity forRT51.23RT

(o) . Shown are the average
temperaturê T&vp

, stream function̂ C&vp
, total buoyancy force

^ f B&vp
, and thermal contribution to the total buoyancy for

^ f B
(T)&vp

, obtained from 100 snapshots spanning ten units of ti
The beginningC field is included to specify the change in th
vertical scale. The corresponding time average of the solutal c
centrationS is similar to that of the temperatureT and has been
omitted. The solutal contribution to the total buoyancy for
^ f B

(S)&vp
closely resembles2^ f B

(T)&vp
and has also been omitted.
at

vpDq5DV, ~24!

whereDq[q12q2, DV[V12V2 represent the jumps in
the wave number and frequency across the shock. We
rewrite this relation in the more convenient form

vp5
l1v22l2v1

l12l2 , ~25!

wherev[V/q is the local phase velocity andl[2p/q the
local wavelength. The predictions from this formula a
compared with measured values ofvp in Table IV. Since the
pulses do not move completely rigidly@their widths mea-
sured by tracking regions wherel r(x),l̄r exhibit small os-
cillations due to the passage of rolls in and out of the pul#
the values ofvp computed from Eq.~24! are not completely
time independent. Consequently the values ofl̄r ,b and v̄ r ,b
listed in Table IV represent the average of their instan
neous values, measured frame by frame. Similarly, the m
sured pulse velocityvp also represents a time average. Non
theless the average of the instantaneous values ofvp
computed from the jump condition~25! using the instanta-
neous values ofl̄p,b and v̄p,b shows remarkable agreeme
with the pulse velocity measured directly.

B. Dynamics

The phasew of the waveC„kx2vt1w(x,t),z… satisfies
an evolution equation called a phase equation. This equa
follows from a gradient expansion~]xw!1, ] tw!1! and the
symmetries of the underlying wave train. In the present c
Galilean symmetry is absent~because of the no-slip bound
ary conditions imposed atz50,1!; consequently the wave
train has only two symmetries, a continuous translation sy
metry,

w→w1const, ~26!
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indicating the fact that the absolute value of the phase
arbitrary, and the discrete ‘‘mirror-glide’’ symmetry@2,14–
16#. If the wave train has period 2p/k this symmetry acts by

C→2C, w→w1
p

k
. ~27!

Consequently the mirror-glide symmetry hasno effect on the
structure of the phase equation. The most general evolu
equation for the phase is therefore

]w

]t
1cg

]w

]x
52a

]2w

]x22b
]3w

]x32c
]4w

]x42dS ]w

]x D 2

22e
]w

]x

]2w

]x22 f S ]w

]x D 3

23gS ]w

]x D 2 ]2w

]x2

2hS ]2w

]x2 D 2

2k
]w

]x

]3w

]x32 l S ]w

]x D 4

1••• ,

~28!

correct to fourth order in spatial derivatives, cf.@20#. Herecg
is the group velocity of the perturbations at onset in
laboratory frame. This equation typically exhibits solutio
in the form of spatiotemporal chaos, called phase turbule
@21#. Such spatiotemporal chaos occurs when 0,a!1, and
is to be distinguished from the appearance of ‘‘phase slip
at which the phase description breaks down. These typic
occur for larger values ofa. As already mentioned, the pre
ence of phase slips invalidates the phase description; th
not so when phase turbulence is present. In order to m
the parameter regimeRT5(1.19– 1.27)RT

(o) in which stable
pulses are observed, and phase turbulence absent, we re
the range of possible behavior by imposing the requirem
that the right side of Eq.~28! be in conservation form, i.e.
d5 f 5 l 50, h5k. Thus

]w

]t
1cg

]w

]x
52

] j

]x
, ~29!

where

j 5awx1bwxx1cwxxx1ewx
21gwx

31hwxwxx1••• .
~30!

The motivation for studying Eq.~29! instead of Eq.~28! is
threefold. First of all, it allows us to make contact with r
lated work on confined states arising through phase insta
ties of periodic patterns of steady rolls@22,23#. Second, it
allows us to reduce the number of coefficients in the desc
tion. Finally, the phase equation in the pulse frame can
integrated once, yielding a third-order equation for the pu
shape. Given the fact that the observed pulses are chara
ized by a monotonic rise and an oscillatory trailing end su
a description is theminimalone consistent with the observa
tions. Moreover, as discussed further below, the obser
pulse shapes are completely consistent with such a th
order description.

Several special cases of Eq.~29! have already been stud
ied. For steady rolls the corresponding equation (cg5b5h
50) is of B2E type in the phase equation classification
Kuramoto@24#. The resulting equation has a Liapunov fun
is
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tional and consequently admits only time-independent st
in the long time limit. This is also the case in the close
related Chapman-Proctor equation (cg5b5e5h50) @25#.
With appropriate boundary conditions all these equatio
have steady pulselike solutions, as discussed in detai
Deissler, Lee, and Brand@23#. However, because they hav
variational structure all stable pulses are necessarilysubcriti-
cal. This is because the equilibrium connected by the pu
must itself be stable. As a result the pulse formation proc
is hysteretic. In nonvariational systems this is not necessar
the case. Indeed pulses have been observed at superc
parameter values in experiments on binary fluid convect
@26#. Moreover Scho¨pf and Kramer@27# found stable pulses
in the complex Ginzburg-Landau equation with adestabiliz-
ing cubic nonlinearity at supercritical values of the bifurc
tion parameter, while in systems with a nonzero group
locity pulses can also be stable in the supercritical regim
provided the basic state is only convectively, but not ab
lutely, unstable. This is the regime of interest in the pres
connection.

From Eq. ~29! we see immediately that infinitesima
phase perturbations obey the dispersion relation

s5aQ22cQ41•••1 iQ~cg2bQ21••• !, ~31!

wherew(x,t);exp(st2iQx). Thus phase perturbations gro
whenaQ22cQ41•••.0. Since the anticipated instability i
of long wavelength (Q!1) we suppose thata andc are both
positive. The observed pulses are the outgrowth of the res
ing convective instability~0,a,2.12Abcg if bcg.0, 0
,a,` if bcg,0, whenc50!. We have seen that the insta
bility evolves into a fully nonlinear pulse moving with spee
vp . Even though the phase equation~29! was obtained by a
gradient expansion we shall find it to be useful as amodel
even for the fully nonlinear pulses for whichQ5O(1) seen
in the simulations. A steadily moving pulse moving wi
speedvp to the right satisfies the equation

]j @~cg2vp!w1awj1bwjj1cwjjj1ewj
21gwj

31hwjwjj

1•••#50. ~32!

Thus

vw1awj1bwjj1cwjjj1ewj
21gwj

31hwjwjj1•••50,
~33!

wherev[cg2vp and the constant of integration has been
to zero. In the following we think of Eq.~33! as anonlinear
eigenvalue problem for the speedv, and hence for the pulse
speedvp . As discussed further below the formulation of th
boundary conditions for this problem depends on whethe
is posed on the whole real line or on a finite~periodic! do-
main. If, in addition, the number of roll pairs in the perturbe
and unperturbed wave trains is unchanged as a result o
formation of the pulse, there is no net phase jumpDw across
the domain; this is not so if the number of roll pairs differ
The remaining boundary conditions for Eq.~33! are either
that bothwj andwjj vanish asj→6` ~unbounded domain!
or that both are periodic with periodG ~bounded domain!.
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C. Pulses as homoclinic orbits

We begin with the eigenvalue problem~33! on the real
line, and use it to draw a number of general conclusio
about the pulse shape and other properties. To this end
setc51 and rewrite Eq.~33! as a dynamical system inj. We
write x for w, so that Eq.~33! becomes

x85y,

y85z, ~34!

z852vx2ay2bz2ey22gy32hyz,

with the prime denoting] /]j. This dynamical system de
scribes the spatial structure of the wave number modula
which is given byy(j) in the present notation. It is thi
quantity that can be compared with our simulations. It is
dissipative system,

]x8

]x
1

]y8

]y
1

]z8

]z
52b2hy, ~35!

with a single equilibrium at the origin corresponding to t
unperturbed wave train.

Equation~34! is in the form of a particular codimension
three bifurcation problem@28#. Whenv5a5b50 the fixed
point ~0,0,0! of Eq. ~34! has three zero eigenvalues; the p
rametersv,a,b can therefore be thought of as unfolding p
rameters that ‘‘unfold’’ this triple zero degeneracy. Th
pulses that are of interest correspond to homoclinic orbits
Eq. ~34! that start from the origin atj52` and return to it
at j51`. The excursion of such an orbit~in j space! away
from the origin defines the shape of the pulse. Evidently,
question of whether such pulses exist is a global one. H
ever, a necessary condition for the existence of a pulse is
~0,0,0! is a generalized saddle inj, with at least one unstabl
eigenvector and at least one stable one.

The linearization of Eq.~33! around the origin yields the
characteristic equation

s31bs21as1v50, ~36!

where, for phase instability,a.0. Thus if Res.0 the solu-
tion grows with increasingj but it decays withj if Res,0.
To construct a pulse both types of solution are necess
Thus whenv.0 we need eitherb,0 or ab2v,0 ~or both!
and whenv,0 we need eitherb.0 or ab2v.0 ~or both!.
The simplest situation arises when the phase modulations
only weakly dispersive so thatb'0. The sum of the eigen
values s1 ,s2 ,s3 is then zero, and hence either~i! s15
22m, s2,35m6 in, or ~ii ! s152m1 , s252m2 , s35m1
1m2 . In the former case

a5n223m2.0, 2m~m21n2!5v. ~37!

This case applies whenv and hencem are not too large, and
is the case of greatest interest to us. Note, in particular,
sgnm5sgnv. Thus, when v.0, the origin has a one
dimensional stable manifold and a two-dimensional unsta
one; the opposite is the case whenv,0. Hence whenv.0
~i.e., vp,cg! the trajectory leaves~0,0,0! at j52` as an
exponentially growingoscillation; when it returns asj→` it
s
we
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does so as a decaying exponential without superposed o
lations. Thus the pulse shape is intrinsically asymmet
when vp,cg the leading edge of the pulse is monoton
while its trailing edge is an exponentially decreasing osci
tion. The opposite is the case whenvp.cg , in which case
the pulse leads with an oscillatory precursor. In case~ii !
which applies for largeruvu, e.g., forvp!cg (vp@cg), the
oscillatory tail ~precursor! is absent, with the interface re
placed by a monotonic one. The pulse remains generic
asymmetric, however. These conclusions continue to h
when 0,ubu!1 and

s1522m2
4m2b

9m21n2 1O~b2!,

s2,35m2
5m21n2

9m21n2

b

2

6 inS 11
3m22n2

9m21n2

mb

2n2D1O~b2!. ~38!

The numerical simulations provide valuable informati
about the pulse shape, and in particular about the wave n
ber and frequency modulation due to the presence of a pu
In Fig. 10 we show the wavelengths and phase velocities
the convection rolls atRT51.19RT

(o) , RT51.23RT
(o) , and

RT51.27RT
(o) at one instant in time. Observe that the wav

length and phase velocity curves have similar appeara
Both inside the pulses and outside the phase velocity
wavelength distributions are piecewise constant, with fa
rapid transitions between two sets of values, and both cu
resemble one another. For pulses on the real line the p
velocity is defined asv[V(x,t)/q(x,t) while the wave-
lengthl[2p/q(x,t). For smallw8 it then follows that

v2vp5~v02vp!
l

l0
, ~39!

wherev0 and l0 are the phase velocity and wavelength
the background uniform wave train, i.e.,v05v/k, l0
52p/k. Thus the phase velocity and wavelength are rela
linearly when phase gradients are small. Sincev02vp.0
~see Table IV! Eq. ~39! indicates that the two curves shou
match without reflection. Figure 10 supports these conc
sions; departures from the linear relation visible with i
creasingRT are not surprising since the phase gradients
crease with increasingRT .

The comparison of Fig. 10 with the long-waveleng
theory thus clearly favors our case~i! with v.0. The single
pulse present atRT51.19RT

(o) leads with a monotonic fron
while its trailing edge decays exponentially at a differe
rate, with small superposed oscillations clearly visible. In
case of the two pulses found atRT51.23RT

(o) both pulses
have the same structure, with the oscillatory tail of the le
ing pulse decaying towards negativej before turning into the
leading front of the trailing pulse. AtRT51.27RT

(o) these
oscillations are even more prominent, suggesting thatm is
decreasing withRT and hence that the pulse velocity b
comes closer to the linear group velocity.
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57 539CONFINED STATES IN LARGE-ASPECT-RATIO . . .
However, despite this superficial agreement with the lo
wave theory, the relation between the theoretical descrip
of a pulse on the real line and a train of periodic pulses s
as obtained in our numerical simulations is not straightf
ward. This is because in a finite domain with periodic boun
ary conditions the pulse is a fully nonlinear state everywhe
even in the wings of the pulse the wave number modula
about the putative background state does not vanish. T
the use of periodic boundary conditions has important im
cations for the correct definition of the background state.
see this note that on the real line the definition ofw(x,t) as
the perturbation to the phase of a spatially uniform wa
train and its localized nature imply that*2`

` wj dj5w(`)
2w(2`)50. Thus the area under the wave number per

FIG. 10. Profiles of roll velocities and wavelengths as a funct
of position in the domain at one instant in time. The profiles tra
almost rigidly to the right with speedvp . Vertical lines indicate roll
boundaries~dotted!, and pulse boundaries~solid!. The dots corre-
spond to computed values of wavelengths and phase velocities.
ues at the right of the phase velocity panels are, from top to bott
the phase velocities in the background and inside the pulse,
pulse velocityvp . Values at the right of the wavelength panels a
~top! the roll wavelengths outside the pulse and~bottom! inside the
pulse.~a! RT51.19RT

(o) . ~b! RT51.23RT
(o) . ~c! RT51.27RT

(o) .
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bation must be zero. On a finite but periodic domain t
observed conservation of phase during the evolution of
phase instability likewise implies that*0

Gwj dj5w(G)
2w(0)50. As can be seen from Fig. 10 the conditio
*0

Gwj dj50 defines a background~the underlying uniform
wave train! that differs from the background wave numb
kb defined by the condition thatuwj2kbu!1 in the largest
possible fraction of the domain 0<j<G. Relative to this
background*0

G(wj2kb)dj5A.0, and hencekb52A/G
,0. The wave number shiftkb is finite because the phas
perturbation is distributed over a finite domain and not
whole line; kb vanishes asG→`. Relative to the shifted
background a pulse represents a net phase change, mea
by A. In the following we therefore relate the observe
pulses to solutions of Eq.~33! on 0<j<G with the bound-
ary conditionsw(0)50, w(G)5A, wj andwjj both periodic,
with A determined from Fig. 10. Similar issues were encou
tered already by Deissler, Lee, and Brand@23# in their study
of confined states described by phase equations with va
tional structure.

D. Determination of the dispersion relation

In this section we use the shape of the pulse wings in F
10 to determine the coefficientsa/c, b/c, and v/c in the
dispersion relation~31! on the assumption that the observ
pulses approximate the homoclinic pulses described in
preceding section. In view of the finite areaA and theO~1!
wavelength modulation in the observed pulses it is neces
that we first redefine the background wave number as
cussed above. To determine the dispersion relation gov
ing small wave number perturbations about this backgro
we fit each interpulse region to a curve of the form

f ~x!5a01a1x1a2el1x1el2x@a3cos~s2x!1b3sin~s2x!#,
~40!

connecting the leading edge of one pulse to the trailing
of the preceding one. In cases where multiple pulses w
present we focused on thelargest interpulse region. We
chose this approach instead of studying each pulse wing
dividually because the characteristics of adjacent pulses t
cally overlap. Even in the one-pulse case, where one wo
expect that the extent of the background region would m
the leading and trailing pulse ends disconnected, the w
gling of the trailing end propagates all the way up to t
leading end. In all cases the fitted value ofa0 was very close
to the measured wavelength of the rolls in the backgrou
The parametera1 turned out to be zero in all the fits exce
in the one-pulse case (RT51.19RT

(o)) in which a slight slope
of the background is present, representing a wave num
gradient between the pulse and its periodic image. The fi
values ofl1 , l2 , ands2 provide estimates of the quantitie
s1 , Res2, and Ims2, respectively, and hence of the rootss1 ,
s2 , s̄2 of the characteristic equation~36!. Table V lists these
estimates. Such estimates improve with the interpulse s
ration. In a successful fitl1,0, l2.0. From these eigenval
ues we can obtain values ofa, b, andv. To check on the
consistency of these results we use the observed pulse s
vp to deduce fromv the group velocitycg . Table VI lists the
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540 57ALEJANDRO SPINA, JURI TOOMRE, AND EDGAR KNOBLOCH
resulting values ofa, b, v, andcg . There is no indication
that a higher-order characteristic equation would lead to
improvement in these fits.

In all cases the fitted values ofv are positive, implying
that the pulse~or pulse pair! travels more slowly than the
group velocitycg for long-wavelength perturbations. More
over, in these cases the fitted values ofa are positive, imply-
ing that the basic wave train isunstablewith respect to long-
wavelength phase instabilities, as hypothesized. A signific
source of error arises from fits that put too much weight
points that are contaminated by nonlinear effects; this pr
lem increases with decreasing interpulse distance and h
becomes particularly acute for multipulse states. In s
states the double-pulse solution of the dynamical system~34!
with the appropriate period may not approach the ori
closely enough to sample the linear dispersion relation
describes its behavior in its vicinity. Consequently we exp
that the values of the dispersion relation coefficients dedu
from the corresponding fits will be less accurate than th
obtained in the single-pulse case. This may account for s
of the scatter in the coefficient values, particularly ina.

TABLE V. Exponential fits to the largest interpulse interva
computed by fitting the function~40! to the measured data by lea
squares techniques. Numbers in parentheses indicate standa
viations.

RT /RT
(o) s1 Res2 Ims2

1.19 20.82 1.36 0.90
~0.08! ~0.43! ~0.61!

1.23 20.82 1.52 1.05
~0.45! ~0.38! ~0.46!

1.23a 20.72 1.75 1.12
~0.11! ~0.51! ~0.41!

1.23b 20.92 1.63 0.74
~0.14! ~0.29! ~0.48!

1.23c 21.02 1.51 1.18
~0.19! ~0.65! ~1.28!

1.27 20.75 1.17 0.76
~0.09! ~0.69! ~0.77!

aTwo-pulse mutated state with 26 roll pairs.
bTwo-pulse mutated state with 24 roll pairs.
cTwo-pulse mutated state with 22 roll pairs.

TABLE VI. The values of the dispersion relation coefficientsa,
b, andv in Eq. ~36! obtained from the fitted values of the eige
valuess.

RT /RT
(o) a b v cg

1.19 0.42 21.90 2.21 8.09
1.23 0.91 22.21 2.78 8.20
1.23a 1.79 22.78 3.10 8.54
1.23b 0.22 22.35 2.94 8.31
1.23c 0.61 22.00 3.73 9.39
1.27 0.21 21.60 1.46 5.95

aTwo-pulse mutated state with 26 roll pairs.
bTwo-pulse mutated state with 24 roll pairs.
cTwo-pulse mutated state with 22 roll pairs.
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These results parallel a recent measurement of the phase
fusion coefficient for traveling wall modes in rotating co
vection @29#. See also@20#.

The last column in Table VI lists the values of the group
velocity deduced from the values ofv in the previous col-
umn with the help of the results listed in Table IV. The rou
consistency of these values is reassuring, and supports
interpretation of the pulse formation process as the con
quence of a long-wavelength phase instability and its
scription using the third-order phase equation~29!. Note that
such consistency could not hold if we fitted each pulse se
rately. Such individual fits would yield a value ofv but this
value would reflect the speed of the pulse only in the abse
of all others. In fact the pulse pairs travel together with
common~constant! speed, determined by the pulse-pulse
teraction, and it is this speed that is determined by fitting
largest interpulse interval. This proviso applies to the sin
pulse as well: because of the use of periodic boundary c
ditions a single-pulse state is in fact a periodic train
equally spaced pulses. Such a pulse train has a diffe
speed than an isolated pulse of identical shape.

E. Pulse multiplicity and the Shil’nikov mechanism

The inference that Eq.~29! possesses a homoclinic orb
of saddle-focus type for appropriate values of the coefficie
of the nonlinear terms has a number of additional con
quences. A general theory of the dynamics~in j! when such
orbits are present is due to Shil’nikov@30#; its elaboration by
Glendinning and Sparrow@31# is particularly useful. The
theory defines a quantityd ~the eigenvalue ratio! as

d52
Res2

s1
~41!

and shows that a homoclinic orbit to a fixed point withd
.1 is generically simple and isolated. On the other hand
d,1, the orbit coexists with an uncountable number of no
periodic orbits as well as a countable number of perio
orbits of arbitrarily large periods. Although all these orb
correspond to different spatial states they do not resemble
observed pulselike states. However, Glendinning and S
row show that for parameters near those required for
formation of the primary~single-pulse! homoclinic orbit
there are other parameter values~i.e., values ofv! for which
double-pulse homoclinic orbits are present. These h
moclinic orbits~called secondary by Glendinning and Spa
row! start out as if to form a single pulse but miss the orig
the first time around, and so spiral away from it again, for
ing a second pulse. Only after a second large-amplitude
cursion from the origin do they connect to the origin. Su
solutions~see Fig. 11! are exactly of the form of our two-
pulse states. Note that our approach predicts that a do
pulse should move at constant speed given by the co
sponding eigenvaluev, maintaining constant separation b
tween the two pulses. As suggested in Fig. 11 there is in
a countably infinite number of such double-pulse~also triple-
pulse etc.! states which accumulate~exponentially! on the
parameter value,v* say, at which the primary one-puls
homoclinic orbit is present. These orbits differ in the numb
of turns each makes around the origin: the outer ones~v

de-
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2v* large! perform few turns and hence correspond
double pulses with few oscillations inq separating them
while the inner ones perform more and more such osc
tions as their eigenvaluev approachesv* ~see Fig. 11!. The
double-pulse homoclinic orbits accumulate onv* at a geo-
metric rate given by, cf.@32#,

vn11

vn
5expS 2

2pm

n
1O~b! D5expS 2

2pm

Aa13m2
1O~b!D ,

~42!

wherev* 52m(a14m2). In contrast the saddle-node bifu
cations~see Fig. 11! accumulate at the rate

vn11

vn
52expS 2

pm

n
1O~b! D

52expS 2
pm

Aa13m2
1O~b!D , ~43!

It should be noted that no similar behavior occurs in case~ii !
in which only the primary one-pulse orbit is present atv* ,
cf. @33#; as v→v* the period of a periodic array of pulse
increases monotonically with no ‘‘horseshoe’’ formatio
much as in case~i! with d.1.

Thus far we have discussed the consequences of hav
homoclinic orbit to a saddle focus satisfying the Shil’niko
condition 0,d,1. This theory applies on the real line2`
,j,1`. Our numerical simulations use a finite albeit lar
domain with periodic boundary conditions. Consequen
true homoclinic pulses cannot form, and our pulse sta
must be interpreted as periodic states with a long but fi
period. In particular, the plethora of nonperiodic trains
pulses that coexist with the primary pulse atv* cannot be
realized in our periodic geometry. Among the periodic sta
present atv* only those with the correct period can be re
ized. We indicate this process by the dashed horizontal l

FIG. 11. The modulation wavelengthL vs v showing the cre-
ation of single- and multiple-pulse states near the primary
moclinic connection atv* ~corresponding to a single pulse on th
real line!, satisfying the Shil’nikov conditiond,1.
-
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drawn in Fig. 11 which correspond to the periodG and its
integer fractionsG/N, N51,2, . . . . As thewavelength
curveL(v) approaches the primary homoclinicity atv* it is
cut by the dashed lines. The intersection with the lineG/N
indicates the presence of a single-pulse state with periodG/N
at the correspondingv. This state can be replicated formin
an N-pulse state that fits within the full periodG. Such mul-
tipulse states are characterized by equal separation betw
the constituent pulses. Figure 11 also shows one of infini
many subsidiary homoclinicities corresponding to the form
tion of double pulses. The speed of such pulses correspo
to the intersection of the correspondingL(v) loci with the
line G. These double-pulse states are fundamentally differ
because while they still move rigidly with the speed given
this intersection their separation will be uneven. Moreov
as indicated in Fig. 11, the different double states formed
way will have different numbers of oscillations in their tai
and will propagate with slightly different speeds than pairs
identical pulses. Figures 2~b! and 8~b! illustrate two distinct
solutions, both with 26 roll pairs and two pulses with unev
pulse separation. In a similar way one can construct a var
of three-pulse states@see Fig. 8~a!#. However, recent theoret
ical work @34# indicates that such constructions are not
finite codimension; in particular, on the real line three-pu
states can be produced byarbitrarily small changes in the
eigenvalue ratiod. Consequently any attempt to describe t
observed three-pulse states by a truncated dynamical sy
of the form~34!, i.e., a truncated phase equation, is doom
to fail.

In the theory the cased5 1
2 is a degenerate one becau

the linearization about the origin is divergence-free. This
the case for the Kuramoto-Sivashinsky equation@35#. In the
present case when dispersion (bÞ0) is included we find that

d5
1

2 S 12
b

2m D1O~b2!. ~44!

Thus the Shil’nikov mechanism is generic in the pres
problem only in the presence of dispersion.

F. Pulse solutions of the phase equation

The conclusions we have drawn so far are predicated
the presenceof a homoclinic orbit of saddle-focus type i
Eq. ~29! when the coefficients of the linear terms take t
values deduced from the observed pulse shapes. But whe
such an orbit is present is clearly a function of the nonlin
terms. It is a simple matter to show that for some choices
the coefficients the requisite homoclinic orbit cannot ex
For example, whenv.0, b,0 ~and A50! this is the case
for all h<0. Evidently a more detailed theory would sta
with known ~calculated! values of the coefficientsa,...,h,
and ask for what value~or values! of v do such orbits exist.
Such a theory would not only predict the shape of the pu
but also its speed, rather than simply looking for consiste
in the general picture. Since we are not in a position to co
plete this program we simply confirm that the phase equa
~29! is capable of describing pulse states of the type
scribed in Sec. III. To this end we have solved the nonlin
eigenvalue problem~33! on a finite domain of lengthG
564 with a discretized one-dimensional mesh using an ite
tive Newton-Raphson-Kantorovich scheme@36# of high ac-
curacy in both theL2 norm of wj and the corresponding
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542 57ALEJANDRO SPINA, JURI TOOMRE, AND EDGAR KNOBLOCH
eigenvaluev. For the linear coefficients we used the valu
deduced from the pulse shape in Sec. IV D,a50.4, b5
21.9,c51.0; in an effort to model the single pulse observ
at RT51.19RT

(o) we usedw(0)50, w(G)5A, as the bound-
ary conditions, withwj , wjj periodic andA determined from
Fig. 10~a!. The result shown in Fig. 12~a! is for e,0 and
g.0 for which homoclinic orbits to a nonzero backgrou
wave number are possible. The figure shows a single puls
terms of the wave number modulationwj(j), riding on a
sloping background corresponding to a nonuniform ba
ground wave number. In Fig. 12~b! we show, for compari-
son, Fig. 10~a! redrawn in terms of the local wave numbe
For the parameter values chosen, the solution of the ph
equation yields a broader pulse than realized in the sim
tion. As discussed in Sec. IV D the wave number gradi
was found to be an essential part of the fitting procedure@Eq.
~40!#. The asymmetry of the pulse in Fig. 12~a! is similar to
that of the observed pulse, while the corresponding eig
valuev56.20 yields a pulse speedvp that is about one-third
of the observed one.

The phase equation~29! exhibits a rich variety of pulse
like solutions which will be described elsewhere. The form
lation of the pulse formation problem on a finite doma
facilitates the location of such solutions, but requires
specification of the phase jumpA across the domain. Th
finite size of the domain tends to suppress phase turbule
and extends the parameter regime in which the phase e
tion exhibits pulselike solutions.

G. Stability considerations

Thus far we have not addressed the stability propertie
the various states identified above as solutions of the ph
equation~29!. We plan to give a detailed discussion of the
and of the multiplicity of pulselike solutions to Eq.~29! else-
where. However, the following remarks can be made.

FIG. 12. ~a! Solution wj(j) of the phase equation~33! with a
50.4, b521.9, c51.0, e52800, g5820, h5700, and an im-
posed phase jumpA53.6332p. The eigenvaluev56.20 implies a
pulse speedvp'1.88. ~b! The instantaneous local wave numb
q(x)[2p/l(x) computed from Fig. 10~a! for comparison with~a!.
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We have taken the point of view that the states found
the numerical simulations of Eqs.~1!–~5! are stable, al-
though this is in fact something that is extremely hard
demonstrate, both mathematically and numerically~because
of the very long horizontal diffusion times across the d
main!. Any stability discussion divides naturally into tw
parts, the stability of a single-pulse state, and the stability
a periodic train of pulses. Assuming that only one pulse
present per period one first examines the stability of this s
with respect to perturbations with the same wavelength; s
sequently one can examine the stability with respect to p
turbations with periods that are increasing multiples of
basic period. Unfortunately the stability properties of h
moclinic pulses on the whole real line are not easily est
lished, even in dissipative systems@37#. In fact we expect
that most such states will prove to be unstable, possibly
cluding the one shown in Fig. 12~a!. Usually stable pulses on
the real line require that the equilibrium state that is co
nected by the pulse is stable; otherwise the pulse inherits
instability of the equilibrium. Thus stable pulses are usua
subcritical. In our case this argument suggests that st
pulses should only be observed when the phase diffus
coefficient2a is positive. While this is so for the Eckhau
instability, in dispersive systems, such as the one consid
here, stable pulses can be present even when the basic
librium is unstable, provided that the instability is only co
vective. In fact the theory described above applies equ
well for a negative as fora positive. The only difference is
that whena,0 the quantitym in Eq. ~37! must be suffi-
ciently large. It follows thatv must also be sufficiently large
and hence that the pulse speedvp will differ substantially
from the group velocitycg . In fact this is the case for the
pulses we have found~see Table IV!. However, we have
been unable to find any signature of the required hyster
in the pulse formation process and consequently favor
choicea.0. Assuming that a single pulse per wavelength
stable the stability of a whole train of such pulses may th
be described as in Refs.@38,39#. One finds that instability
that leads to pulse bunching~i.e., a nonuniform train of
pulses! depends on the dispersion relation giving the pu
speedvp as a function of the basic period or waveleng
Unfortunately since all our calculations were done with t
same aspect ratioG564 we have no information about thi
dispersion relation and hence about the stability propertie
whole trains of pulses.

Finally, it is of interest to note that the phase equati
examined by Janiaudet al. @20# also exhibits the formation
of pulses, although in a rather limited parameter regime
cated astride the Benjamin-Feir instability boundary and v
close to it. In the equation studied here the pulse format
process appears to be more robust, while its special f
facilitates analytical approach.

V. DISCUSSION AND CONCLUSIONS

In this paper we have initiated a study of the mechanis
that lead to the formation of confined states in tw
dimensional large-aspect-ratio thermosolutal convection.
merical simulation of the Boussinesq equations describ
the system in a two-dimensional periodic domain with re
istic boundary conditions revealed the existence of a pleth
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57 543CONFINED STATES IN LARGE-ASPECT-RATIO . . .
of confined states, both single pulse and multipulse, al
which were found to travel rigidly on top of a uniform trai
of fully nonlinear traveling waves. All of our pulses travele
in the same direction as the underlying wave train but did
more slowly, sometimes substantially so, and appeared t
created spontaneously as a result of a phase instability
particular, no finite-amplitude perturbations were required
form these pulses, and no evidence of hysteresis in t
formation was uncovered. The pulses lead to the appear
of spatially nonuniform wave trains in which patterns wi
differing phase velocities, amplitudes, and wavelengths
exist stably. They are characterized by a larger degree
coherence between the vertical velocity and the thermal
solutal fields and as a result transport more heat and so
than the background state. Consequently, the proces
pulse formation can be interpreted as an attempt by the
tem to maximize heat and solute transport within the c
straint imposed by phase conservation, i.e., a fixed numbe
rolls.

We have focused on the Rayleigh number regi
1.15RR

(o),RT,1.27RT
(o) within which pulse formation is ini-

tiated but the phase of the pattern remains well defined. T
regime allows one to employ the techniques of phase dyn
ics, one of the few analytical means available to us for
derstanding confined states that develop on top of a hig
nonlinear state. We have used this approach to gain sub
tial insight into the properties of these pulses and their m
tiplicity. These pulses appear to be well described by a th
order phase equation. This equation is a particularly sim
case of the phase equation describing the evolution of lo
wavelength Benjamin-Feir instability of traveling wave
@20#. To our knowledge this important special case has
hitherto been studied. We have found, using our phase e
tion, that the pulse shape is given by a third-order nonlin
eigenvalue problem, with the eigenvalue determining
pulse speed. The theory makes predictions about the p
shape that are consistent with the results of our simulatio
These include the fact that pulses traveling more slowly t
the group velocity should have oscillatory tails, and that
local wavelength and phase velocity should be linearly
lated. In addition we verified a general expression relat
the pulse speed to the wavelengths and phase veloc
within the pulses and without. We interpreted the oscillato
tail of the pulses in terms of a homoclinic orbit to a sadd
focus satisfying, under mild assumptions on the phase di
sion and dispersion coefficients, the Shil’nikov condition
,d,1. Using standard theory we established the prese
on the real line, of a great number of coexisting pulse a
nonpulse states, and applied this result to establish the e
tence on a periodic domain of not only single pulses but a
of two different types of double~and triple etc.! pulses, all of
which move rigidly at constant speed given by the eig
value of an appropriate nonlinear eigenvalue problem. Th
included periodic two-pulse states in which the pulses
identical and their separations equal, and others in wh
they are not. We exhibited examples of such pulses in
numerical simulations, obtaining them by a process
called ‘‘mutation’’ in which selected parts of the pulse we
culled and replicated to create an initial condition of the d
sired kind. Time integration forward in time was then used
check their stability.
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Despite the success of our approach we caution that
phase approach has an important shortcoming. Formal
applies only to states with weak phase gradients. In
pulses wave number changes of order one were comm
Thus our states are outside the regime in which the equa
should hold. It appears, however, that phase conservation
sufficiently strong constraint that the phase equation provi
a reliable model even outside its formal range of validity.

Another approach to the present problem would be
consider a pulse as the bound state of two fronts, with
pulse width determined by the minimum of the potential b
tween them~if one exists!. The small oscillations observed i
the widths of the pulses during their propagation~see Sec.
IV ! could then be interpreted as oscillations about the m
mum of this potential. Although such oscillations should d
cay with time, we have found them to be long lived. A
though the most likely explanation of such oscillatio
~based on their frequency! is that they are an effect of th
finite size of the rolls we cannot exclude the possibility th
they are the consequence of self-excited oscillations of s
bound states~cf. @40#!. This approach, which offers scope fo
a more realistic model of the confined states described h
is planned for a future paper.

The present paper represents the first observation of
fined states in thermosolutal convection. These confi
states are distinct from the ones found in binary fluid co
vection. The latter occur very close to onset and consis
localized packets of traveling waves on an otherwise un
turbed background. They also differ physically. In bina
fluid mixtures there is no net concentration transport, o
concentration migration in response to the applied temp
ture gradient. Thus the concentration is ultimately pump
horizontally, out of the packet, where it creates regions
negative buoyancy. As a result the packets travel much m
slowly than might otherwise be expected. However, beca
these states are found near onset they are still accessib
description by weakly nonlinear theory@5#. In contrast, in the
thermosolutal system solute is transported in the vertical.
a result there is very little tendency towards the kind of co
centration braking that is so important in binary fluids. R
cent developments in experimental technique@8# suggest that
the pulses described here should be amenable to experi
tal study. The physical considerations just alluded to a
suggest that any small-amplitude subcritical localized sta
present near onset of oscillatory thermosolutal convec
should travel faster and have different stability propert
than the corresponding ones in binary fluid convection. Ho
ever, for our parameter values there is an additional diff
ence as well. The subcritical traveling waves present at th
parameter values have asecondunstable eigenvalue: they ar
unstable with respect to standing waves, which also bifurc
subcritically. Consequently we do not expect localized pa
ets of traveling waves near onset in our system, although
possibility of small-amplitude confined states ofstanding
waves cannot be excluded.

In their study of localized traveling waves in binary fluid
near onset Bartenet al. @7# showed that the localized state
drifted with a small group velocity in the propagation dire
tion of the phase of its TW components; in the comovi
frame these states were found to be time periodic. Differ
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544 57ALEJANDRO SPINA, JURI TOOMRE, AND EDGAR KNOBLOCH
localized states differed only in the width of the central p
of the pulse while the leading and trailing ends~although
different! were found to be the same in all the simulatio
performed. The velocity, temperature, and concentration p
files could not be described by one common amplitude si
their widths and shapes were different. The velocity and te
perature amplitudes in the center of the localized states w
only slightly smaller than in the extended states at the sa
values of the parameters. However, the local waveleng
and phase speeds of the rolls increased monotonically as
moved from the trailing toward the leading end. The fr
quency of the traveling waves in such a pulse was found
be about half the Hopf frequency at the onset, a much la
value than in an extended state, indicating a larger conc
tration contrast between adjacent rolls and a greater m
lateral concentration flux for the localized states than for
extended ones. The wavelength in the pulse was only a
10% smaller than in an extended state of similar frequen

Bartenet al. found that the mean buoyancy force in su
convection is dominated by the concentration contribut
rather than the thermal one. A phase shift between the c
centration wave and the velocity wave which takes place
the central part of the localized state drove a mean con
tration circulation extending over the whole localized sta
This in turn induced a large-scale concentration redistri
tion. Ahead of the leading front this concentration redistrib
tion produces a barrier that weakens the mean buoya
force, thereby impeding a rapid invasion of the conduct
region by convection. On the other hand, the different wid
of the concentration and temperature pulses appear to
hance the buoyancy under both fronts and thereby stab
the localized state against invasion by the conduction st
The mean concentration flux decreases with decreasing
quency~increasingRT! and with it the concentration redis
tribution. This weakens the barrier and increases the forw
drift motion of the localized state. Larger frequenci
strengthen the barrier and the forward drift velocity of t
pulse into the quiescent regime is reduced. These result
in good agreement with the experimental results of Kolod
@41# and with the analytical theory of Riecke@5#. We have
identified similar large-scale communication in therm
solutal convection using moving averages. In the refere
frame moving with a pulse the small-scale dynamics are
re
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tered out, revealing the dynamics on the scale spanning
full horizontal width of the domain and involving large-sca
vortices that drift with the pulses. The pulses owe their e
istence to an interaction between the order one convec
scale and this large scale.

We should remark that traveling wave thermosolutal co
vection has not hitherto been simulated with no-slip bou
ary conditions, even in domains with basic period of ord
the roll wavelength. Here, however, our results do not dif
markedly from those obtained by Bartenet al. for binary
mixtures @16#. In particular, the velocity and temperatu
fields are observed to have similar structure and strengt
those in comparable stationary states in pure-fluid conv
tion, with the temperature wave phase shifted slightly re
tive to the velocity wave, cf.@1#. In contrast to the velocity
and temperature components, which at our Rayleigh nu
bers were nearly harmonic, the solutal component was fo
to be highly nonharmonic, with an almost trapezoidal profi
indicative of nearly homogeneous solute within each ro
separated by a thin boundary layer that snakes alterna
between the top and bottom of the layer. This is a con
quence of the ‘‘mirror-glide’’ symmetry which in turn is a
consequence of imposing identical boundary conditions
the top and bottom of the layer. The lateral mean flow in
uniform wave train was found to be several orders of m
nitude smaller than the phase velocity of the wave. A sm
but significant mean lateral convective heat flux, ranging
tween 0.006NT and 0.014NT , is generated by the phas
shift between the vertical velocity of the fluid and the tem
perature wave, with a similar solute flux, between 0.015NS
and 0.038NS , generated by the phase difference between
convection and the solutal wave. Such mean flows and flu
were also found in simulations of binary fluid mixtures@16#.
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@21# H. Chatéand P. Manneville, inTurbulence: A Tentative Dic-

tionary, edited by P. Tabeling and O. Cardoso~Plenum, New
York, 1994!.

@22# H. R. Brand and R. J. Deissler, Phys. Rev. A41, 5478~1990!.
@23# R. J. Deissler, Y. C. Lee, and H. R. Brand, Phys. Rev. A42,

2101 ~1990!.
@24# Y. Kuramoto, Prog. Theor. Phys.71, 1182~1984!.
@25# C. J. Chapman and M. R. E. Proctor, J. Fluid Mech.101, 759

~1980!.
@26# P. Kolodner, Phys. Rev. Lett.66, 1165 ~1991!. This paper

demonstrates that the supercritical confined states foun
Ref. @3# do travel in a sufficiently uniform experimental cell
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